Genetic Basis/Causes of MS
Bernales CQ, Encarnacion M, Criscuoli MG, Yee IM, Traboulsee AL, Sadovnick AD, Vilariño-Güell C.
Abstract
The implementation of exome sequencing technologies has started to unravel the genetic etiology of familial multiple sclerosis (MS). A homozygote p.G587S mutation in NLRP1 has been suggested as potentially causative for the onset of MS in an affected sibling pair, who later developed malignant melanoma. To validate the proposed role of recessive NLRP1 mutations in the pathological mechanisms of MS, we examined exome sequencing data from 326 MS patients from Canada for the identification of NLRP1 missense and nonsense variants. This analysis did not identify the previously described p.G587S mutation; however, three patients with potential NLRP1 compound heterozygote mutations were observed. Haplotype and segregation analyses indicate that the variants observed in these patients were inherited in cis, and do not segregate with disease within families. Thus, the analysis of MS patients from Canada failed to identify potentially pathogenic mutations in NLRP1, including the previously described p.G587S mutation. Further studies are necessary to confirm a role of NLRP1 in the pathophysiology of MS
Traboulsee AL, Sadovnick AD, Encarnacion M, Bernales CQ, Yee IM, Criscuoli MG, Vilariño-Güell C.
Abstract
Several single-gene disorders with clinical and radiological characteristics similar to those observed in multiple sclerosis (MS) patients have been described. To evaluate whether this phenotypic overlap can be ascribed to a common genetic etiology, 28 genes known to present pathogenic mutations for 24 of these disorders were sequenced in 270 MS patients. All identified variants were genotyped in 2131 MS cases and 830 healthy controls, and those exclusively observed in patients were assessed for segregation within families. This analysis identified 9 rare variants in 6 genes segregating with disease in 13 families. Four different mutations were identified in CYP27A1, including a reported pathogenic mutation for cerebrotendinous xanthomatosis (p.R405W), which was observed in six patients from a multi-incident family, three diagnosed with MS, two with an undefined neurological disease and one seemingly healthy. A LYST p.V1678A and a PDHA1 p.K387Q mutation were both observed in five MS patients from three separate multi-incident families. In addition, CLCN2 p.V174G, GALC p.D162E and POLG p.R361G were each identified in two MS patients from one family. This study suggests a shared genetic etiology between MS and the characterized single-gene disorders, and highlights cholesterol metabolism and the synthesis of oxysterols as important biological mechanisms for familial MS.
Sadovnick AD, Traboulsee AL, Zhao Y, Bernales CQ, Encarnacion M, Ross JP, Yee IM, Criscuoli MG, Vilariño-Güell C.
Abstract
The genetic contribution to clinical outcomes for multiple sclerosis (MS) has yet to be defined. We performed exome sequencing analysis in 100 MS patients presenting opposite extremes of clinical phenotype (discovery cohort), and genotyped variants of interest in 2016 MS patients (replication cohort). Linear and logistic regression analyses were used to identify significant associations with disease course, severity and onset. Our analysis of the discovery cohort nominated 38 variants in 21 genes. Replication analysis identified PSMG4 p.W99R and NLRP5 p.M459I to be associated with disease severity (p=0.002 and 0.008). CACNA1H p.R1871Q was found associated with patients presenting relapsing remitting MS at clinical onset (p=0.028) whereas NLRP5 p.M459I and EIF2AK1 p.K558R were associated with primary progressive disease (p=0.031 and 0.023). In addition, PSMG4 p.W99R and NLRP5 p.R761L were found to correlate with an earlier age at MS clinical onset, and MC1R p.R160W with delayed onset of clinical symptoms (p=0.010-0.041).
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C.
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study, we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS.
Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM, Dyment DA, Sadovnick AD, Ebers GC.
Abstract
Multiple sclerosis (MS), a common central nervous system inflammatory disease, has a major heritable component. Susceptibility is associated with the MHC class II region, especially HLA-DRB5*0101-HLA-DRB1*1501-HLA-DQA1*0102-HLA-DQB1*0602 haplotypes(hereafter DR2), which dominate genetic contribution to MS risk. Marked linkage disequilibrium (LD) among these loci makes identification of a specific locus difficult. The once-leading candidate, HLA-DRB1*15, localizes to risk, neutral, and protective haplotypes. HLA-DRB1*15 and HLA-DQB1*0602, nearly always located together on a small ancestral chromosome segment, are strongly MS-associated. One intervening allele on this haplotype, viz. HLA-DQA1*0102, shows no primary MS association. Two Canadian cohorts (n = 830 and n = 438 trios) genotyped for HLA-DRB1, HLA-DQA1 and HLA-DQB1 alleles were tested for association using TDT. To evaluate epistasis involving HLA-DRB1*15, transmissions from HLA-DRB1*15-negative parents were stratified by the presence/absence of HLA-DRB1*15 in affected offspring. All 3 alleles contribute to MS susceptibility through novel epistatic interactions. HLA-DQA1*0102 increased disease risk when combined with HLA-DRB1*1501 in trans, thereby unambiguously implicating HLA-DQ in MS susceptibility. Three-locus haplotypes demonstrated that HLA-DRB1*1501 and HLA-DQB1*0602 each influence risk. Transmissions of rare morcellated DR2 haplotypes showed no interaction with HLA-DQA1*0102. Incomplete haplotypes bearing only HLA-DRB1*1501 or HLA-DQB1*0602 did not predispose to MS. Balanced reciprocal transmission distortion can mask epistatic allelic association. These findings implicate epistasis among HLA class II alleles in human immune responses generally, provide partial explanation for intense linkage disequilibrium in the MHC, have relevance to animal models, and demonstrate key roles for DR2-specific interactions in MS susceptibility. MHC disease associations may be more generally haplotypic or diplotypic.
Chao MJ, Ramagopalan SV, Herrera BM, Lincoln MR, Dyment DA, Sadovnick AD, Ebers GC.
Abstract
Multiple sclerosis (MS) susceptibility demonstrates a complex pattern of inheritance. Haplotypes containing HLA-DRB1*1501 carry most of the genetic risk. Epidemiological evidence implicating epigenetic factors includes complex distortion of disease transmission seen in aunt/uncle-niece/nephew (AUNN) pairs. Unexpectedly, in AUNN families we found that allele frequencies for HLA-DRB1*1501 were different between the first and second generations affected. Affected aunts had significantly lower HLA-DRB1*15 frequency compared with their affected nieces (chi(2) = 9.90, P = 0.0016), whereas HLA-DRB1*15 frequency in affected males remains unaltered across the two generations (chi(2) = 0.23, P = 0.63). We compared transmissions for the HLA-DRB1*15 allele using a family-based transmission disequilibrium test approach in 1690 individuals from 350 affected sibling pair (ASP) families and 960 individuals from 187 AUNN families. Transmissions differed between the ASP and the AUNN families (chi(2) = 6.92; P = 0.0085). The risk carried by HLA-DRB1*15 was increased in families with affected second-degree relatives (AUNN: OR = 4.07) when compared with those consisting only first-degree relatives (ASP: OR = 2.17), establishing heterogeneity of risk among HLA-DRB1*15 haplotypes based on whether collateral parental relatives are affected. These observations strongly implicate gene-environment interactions in susceptibility and more specifically, that epigenetic modifications differentiate among human leukocyte antigen class II risk haplotypes and are involved in the determination of the gender bias in MS. These data strongly suggest that the female-specific increasing risk of MS is mediated through these alleles or adjacent variation. The comparison of transmission of the same allele in vertically affected pedigrees (AUNN) to collinear sibling pairs (ASP) may provide a useful screen for putative epigenetic marks.
Ramagopalan SV, Herrera BM, Bell JT, Dyment DA, Deluca GC, Lincoln MR, Orton SM, Chao MJ, Sadovnick AD, Ebers GC.
Abstract
Multiple sclerosis (MS) is a complex trait in which HLA-DRB1*15 bearing MHC haplotypes increase risk of MS in people of Northern European descent. In this investigation of 7,334 individuals from 1,515 MS families, the largest cohort used to study the HLA-DRB1 locus to date, we analysed the transmission of HLA-DRB1*15 haplotypes stratified by sex of transmitting parent. A significant over transmission of HLA-DRB1*15 from mothers was observed (chi (2) = 7.73, P = 0.0054), suggesting that parent of origin effects at the MHC determine susceptibility to MS.
Chao MJ, Barnardo MC, Lui GZ, Lincoln MR, Ramagopalan SV, Herrera BM, Dyment DA, Sadovnick AD, Ebers GC.
Abstract
The human major histocompatibility complex (MHC) class II region is associated with genetic susceptibility to multiple sclerosis (MS). Roles for HLA class I loci have been supported in several case-control studies, but this methodology does not consider the known linkage disequilibrium (LD) between class I and II loci. In 1258 individuals from 294 MS families, we analysed class I and II interactions. Using transmission disequilibrium test and haplotype analyses, we found positive associations between MS and several HLA-DRB1*15-HLA-A haplotypes including HLA-DRB1*15-HLA-A*02 (P = 2.41 x 10(-5)) and -HLA-A*03 (P = 8.42 x 10(-6)) and several HLA-DRB1*15-HLA-B haplotypes including HLA-DRB1*15-HLA-B*07 (P = 2.23 x 10(-10)). HLA-DRB1*15 haplotypes divergent for reported HLA-A allelic associations were equally over-transmitted, illustrating no detectable effect of HLA-A or -B alleles in cis on susceptibility. HLA-A and -B alleles on haplotypes not bearing HLA-DRB1*15 were not over-transmitted. Similarly, general over-transmission of HLA-DRB1*15 haplotypes was independent of the HLA-B allele present. Furthermore, HLA-B*07 haplotypes from HLA-DRB1*X-HLA-B*X/HLA-DRB1*X-HLA-B*07 heterozygous parents were transmitted per random expectation giving no indication of HLA-B independence or trans complementation of HLA-DRB1*15 by HLA-DRB1*X-HLA-B*07 haplotypes. These results imply that many reports of class I allelic associations in MS are class II dependent, secondary to LD with class II loci. The lack of independent class I associations suggests that virus-related class I-antigen complexes are not T-cell targets in MS. The inability to replicate confirmed case-control associations highlights the importance of family-based analyses. The frequency of allelic associations not being replicated emphasizes the requirement for constructing multi-locus haplotypes in dissecting associations in regions of tight LD.
Willer CJ, Dyment DA, Sadovnick AD, Ebers GC.
Abstract
Major histocompatibility complex (MHC) compatibility has been reported to facilitate the long-term tolerance of fetal or maternally derived stem cells exchanged during pregnancy. Furthermore, such compatibility has been suggested to play a role in fetal viability. An increase in maternal - fetal human leukocyte antigen (HLA) compatibility for class II DR alleles has previously been observed in the autoimmune disease scleroderma. Here, we examined the hypothesis that increased maternal - fetal MHC class II DR compatibility was associated with multiple sclerosis (MS) risk. HLA-DRB1 typing was performed in 2170 affected individuals and 2894 unaffected relatives from 1006 families with MS in at least two members. We found no evidence for increased HLA compatibility between affected individuals and their mothers, compared with unaffected individuals and their mothers, nor compared with affected individuals and their fathers. We also observed no excess of homozygosity of mothers compared with fathers of individuals with MS. In families in which the father shared exactly one allele with the mother, we found no excess in transmission of this allele to affected or unaffected offspring. These findings do not support a role for an excess maternal - fetal HLA-DRB1 compatibility in MS susceptibility.
Dyment DA1, Ebers GC, Sadovnick AD.
Abstract
Multiple sclerosis (MS) is probably aetiologically heterogeneous. Systematic genetic epidemiological and molecular genetic studies have provided important insights. Both genetic and non-genetic (environment, stochastic) factors may be involved in susceptibility as well as outcome, but we have yet to understand their relative roles. Any environmental factor is likely to be ubiquitous and act on a population-basis rather than within the family microenvironment. Taken together, the results of genome screening studies provide strong evidence for exclusion of a major locus in MS. There are, however, many genes that seem to be associated with MS. These include, but are in no way limited to, HLA classes I and II, T-cell receptor beta, CTLA4, ICAM1, and SH2D2A. The future of MS genetics, as for most common complex disorders, will be dependent on the resources available, ranging from biological samples and comprehensive databases of clinical and epidemiological information to the development of new technologies and statistical methods.